• Document: Algoritma Data Mining
  • Size: 1.28 MB
  • Uploaded: 2019-03-24 09:14:31
  • Status: Successfully converted


Some snippets from your converted document:

Algoritma Data Mining Algoritma Estimasi  Algoritma estimasi mirip dengan algoritma klasifikasi, tapi variabel target adalah berupa bilangan numerik (kontinyu) dan bukan kategorikal (nominal atau diskrit)  Estimasi nilai dari variable target ditentukan berdasarkan nilai dari variabel prediktor (atribut)  Algoritma estimasi yang biasa digunakan adalah: Linear Regression, Neural Network, Support Vector Machine Contoh: Estimasi Performansi CPU  Example: 209 different computer configurations Cycle time Main memory Cache Channels Performance (ns) (Kb) (Kb) MYCT MMIN MMAX CACH CHMIN CHMAX PRP 1 125 256 6000 256 16 128 198 2 29 8000 32000 32 8 32 269 … 208 480 512 8000 32 0 0 67 209 480 1000 4000 0 0 0 45  Linear regression function PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX Algoritma Prediksi  Algoritma prediksi/forecasting sama dengan algoritma estimasi di mana label/target/class bertipe numerik, bedanya adalah data yang digunakan merupakan data rentet waktu (data time series)  Istilah prediksi kadang digunakan juga untuk klasifikasi, tidak hanya untuk prediksi time series, karena sifatnya yang bisa menghasilkan class berdasarkan berbagai atribut yang kita sediakan  Semua algoritma estimasi dapat digunakan untuk prediksi/forecasting Contoh: Prediksi Harga Saham Dataset harga saham dalam bentuk time series (rentet waktu) harian Contoh: Prediksi Harga Saham (Plot) Contoh: Prediksi Harga Saham (Plot) Algoritma Klasifikasi  Klasifikasi adalah algoritma yang menggunakan data dengan target/class/label berupa nilai kategorikal (nominal)  Contoh, apabila target/class/label adalah pendapatan, maka bisa digunakan nilai nominal (kategorikal) sbb: pendapatan besar, menengah, kecil  Contoh lain adalah rekomendasi contact lens, apakah menggunakan yang jenis soft, hard atau none  Algoritma klasifikasi yang biasa digunakan adalah: Naive Bayes, K-Nearest Neighbor, C4.5, ID3, CART, Linear Discriminant Analysis, etc Contoh: Rekomendasi Main Golf  Input:  Output (Rules): If outlook = sunny and humidity = high then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity = normal then play = yes If none of the above then play = yes Contoh: Rekomendasi Main Golf  Input (Atribut Nominal dan Numerik):  Output (Rules): If outlook = sunny and humidity = high then play = no If outlook = sunny and humidity > 83 then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity < 85 then play = yes If none of the above then play = yes Contoh: Rekomendasi Main Golf  Output (Tree): Contoh: Rekomendasi Contact Lens  Input: Contoh: Rekomendasi Contact Lens  Output/Model (Tree): Contoh: Penentuan Jenis Bunga Iris  Input: Contoh: Penentuan Jenis Bunga Iris  Output (Rules): Contoh: Penentuan Jenis Bunga Iris  Output (Tree): Algoritma Klastering  Klastering adalah pengelompokkan data, hasil observasi dan kasus ke dalam class yang mirip  Suatu klaster (cluster) adalah koleksi data yang mirip antara satu dengan yang lain, dan memiliki perbedaan bila dibandingkan dengan data dari klaster lain  Perbedaan utama algoritma klastering dengan klasifikasi adalah klastering tidak memiliki target/class/label, jadi termasuk unsupervised learning  Klastering sering digunakan sebagai tahap awal dalam proses data mining, dengan hasil klaster yang terbentuk akan menjadi input dari algoritma berikutnya yang digunakan Contoh: Klastering Jenis Gaya Hidup  Claritas, Inc. provide a demographic profile of each of the geographic areas in the country, as defined by zip code. One of the clustering mechanisms they use is the PRIZM segmentation system, which describes every U.S. zip code area in terms of distinct lifestyle types (66 segments). Just go to the company’s Web site, enter a particular zip code, and you are shown the most common PRIZM clusters for that zip code.  What do these clusters mean? For illustration, let’s look up the clusters for zip code 90210, Beverly Hills, California. The resulting clusters for zip code 90210 are: 1. Cluster 01: Blue Blood Estates 2. Cluster 10: Bohemian Mix 3. Cluster 02: Winner’s Circle 4. Cluster 07: Money and Brains 5. Cluster 08: Young Literati Contoh: Klastering Bunga Iris Contoh: Klastering Bunga Iris (Plot) Contoh: Klastering Bunga Iris (Table) Algoritma Asosiasi  Algoritma association rule (

Recently converted files (publicly available):